

REGIONE UMBRIA

DIREZIONE REGIONALE RISORSA UMBRIA. FEDERALISMO, RISORSE FINANZIARIE, UMANE E STRUMENTALI.

ISTITUTO RICERCA PROTEZIONE IDROGEOLOGICA

CONSIGLIO NAZIONALE DELLE RICERCHE

CONSORZIO PER LA BONIFICA DELLA VAL DI CHIANA ROMANA E DELLA VAL DI PAGLIA

AGGIORNAMENTO DELLE FASCE DI PERICOLOSITÀ IDRAULICA DEL TRATTO TERMINALE DEL FIUME PAGLIA

INQUADRAMENTO GENERALE E CARATTERISTICHE IDRO-GEOLITOLOGICHE DEL BACINO

Studio idrologico del bacino del Fiume Paglia e aggiornamento delle fasce di pericolosità idraulica del tratto terminale del corso principale

Delibera n.456 del 22 febbraio 2010

S. BARBETTA, L. BROCCA, S. CAMICI, F. MELONE T. MORAMARCO, A. TARPANELLI

FEBBRAIO 2011

Indice

Ind	ice		
		ione	
2.		del Fiume Paglia	
		adramento generale	
		tteristiche idro-geolitologiche del bacino	
	2.3. Carat	tterizzazione geometrica del corso d'acqua	8
		Singolarità	
	2.3.2.	Modello digitale del terreno delle fasce fluviali	13
	2.4. Rete	di monitoraggio idro-pluviometrico	14
	2.5. Schen	matizzazione del bacino	19
Bib	liografia		21

1. Introduzione

Con Deliberazione n°456 datata 22 febbraio 2010, il Consiglio di Amministrazione del Consorzio per la Bonifica della Val di Chiana Romana e Val di Paglia, ha individuato l'Istituto di Ricerca per la Protezione Idrogeologica (CNR-IRPI), sede di Perugia, l'ente a cui affidare lo "studio idrologico del bacino del Fiume Paglia e aggiornamento delle fasce di pericolosità idraulica del tratto terminale del corso principale".

L'Autorità di Bacino del Fiume Tevere, congiuntamente alla Regione Umbria, alla luce dell'accertata sottostima da parte del Piano di Assetto Idrogeologico (P.A.I.) delle piene del Fiume Paglia, a seguito della revisione delle scale di deflusso (Bencivenga et al. 2001), ha ritenuto necessario ridefinire una nuova idrologia rispetto a quella utilizzata per il P.A.I. e procedere, quindi, all'aggiornamento delle fasce di pericolosità idraulica del tratto di Fiume compreso tra il ponte di Allerona, a monte, e la confluenza con il Fiume Tevere, a valle. Scopo di questo rapporto è la descrizione del bacino del Fiume Paglia e del Torrente Chiani in

Scopo di questo rapporto è la descrizione del bacino del Fiume Paglia e del Torrente Chiani in termini di inquadramento generale e caratteristiche geolitologiche.

2. Il bacino del Fiume Paglia

2.1. Inquadramento generale

Il Fiume Paglia è il principale affluente in destra idrografica del Fiume Tevere nel quale confluisce a valle del lago di Corbara dopo aver percorso circa 85 km attraversando da Nord-Ovest a Sud-Est le regioni Toscana, Lazio e Umbria. Il suo bacino idrografico, che copre una superficie di circa 1350 Km², confina a Nord con il bacino del Fiume Orcia, ad Est con il bacino del Fiume Tevere, a Sud con il bacino del lago di Bolsena e ad Ovest con il bacino del Fiume Fiora. Rispetto alla Regione Umbria, il bacino idrografico in esame si trova a sud-ovest della città di Perugia (si veda la Figura 2.1) ed è compreso tra le coordinate geografiche 43° 11' e 42° 41' di latitudine Nord e 11° 47' e 12°11' di longitudine Est da Greenwich.

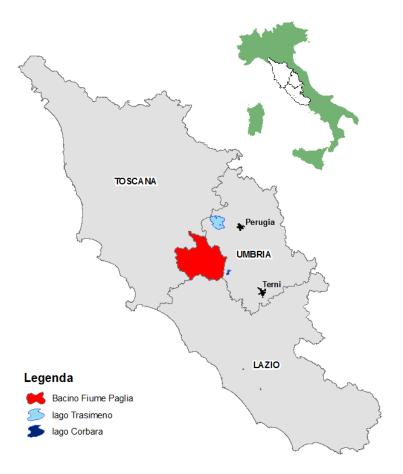


Figura 2.1. Posizione del bacino del Fiume Paglia (1350 km²) nell'ambito regionale.

Il Fiume Paglia nasce a circa 1.000 m s.l.m. alle pendici meridionali del monte Amiata in località Pian dei Renaì. Dopo un lungo corso pedemontano in territorio toscano e laziale il Fiume Paglia entra in Umbria (Comune di Allerona), dove ha inizio il corso vallivo interessato

dalle maggiori infrastrutture di comunicazione a livello nazionale (l'Autostrada del Sole A1, la Strada Statale n.71 Umbro Casentinese, la linea ferroviaria Roma – Firenze).

Il Fiume Paglia raccoglie lungo il suo corso numerosi affluenti; fra questi alcuni sono di scarsa importanza, mentre altri hanno una notevole portata. In sinistra idrografica, l'affluente più importante è il Torrente Chiani che si immette nel Fiume Paglia all'altezza della città di Orvieto, situata a meno di 10 km prima della confluenza con il Fiume Tevere.

Il tratto da analizzare per la valutazione della pericolosità idraulica è quello compreso tra il ponte di Allerona, a monte, e la confluenza con il Fiume Tevere, a valle per una lunghezza complessiva di circa 20 km. Data l'importanza del Torrente Chiani, il bacino di studio considerato nell'analisi idrologica e idraulica è, nel complesso, quello del Fiume Paglia e del Torrente Chiani.

2.2. Caratteristiche idro-geolitologiche del bacino

Le caratteristiche geolitologiche del bacino del Fiume Paglia e del Torrente Chiani sono state acquisite mediante la "Carta Idrogeologica; litologia – stratigrafia - permeabilità" dell'Istituto di Ricerca sulle Acque (CNR-IRSA) del Consiglio Nazionale delle Ricerche e la carta idrogeologica della Regione Umbria (scala 1:100.000). Le caratteristiche di uso del suolo sono riferite invece alla carta sviluppata nell'ambito del progetto CORINE - Land Cover (1:100.000) aggiornata al 2000.

In particolare dalla sovrapposizione delle due carte idrogeologiche è stata estrapolata la composizione litologica del bacino in esame mostrata in Tabella 2.1 ed in Figura 2.2. Il bacino risulta costituito prevalentemente da depositi fluvio-lacustri (41.5%) e flyshoidi (24.2%) che sono presenti soprattutto nelle zona di monte del bacino. La zona di valle è invece caratterizzata dalla presenza predominante di vulcaniti.

Tabella 2.1. Caratteristiche litologiche del bacino del Fiume Paglia.

Litologia	Area (%)
Calcari	0.6
Conoidi	0.3
Depositi fluvio-lacustri	41.5
Depositi recenti	12.7
Flyshoidi	24.2
Vulcaniti	20.7

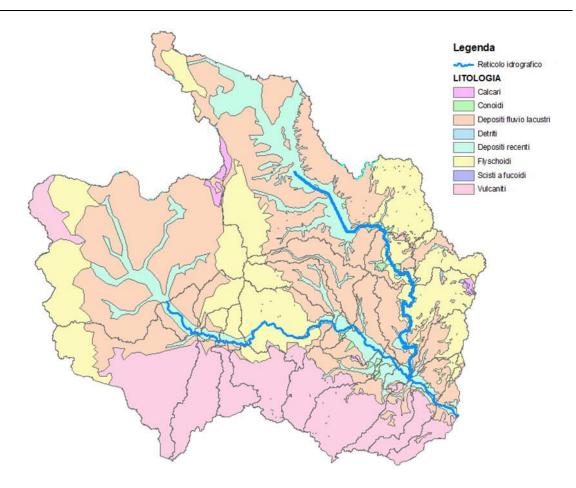


Figura 2.2. Bacino idrografico del Fiume Paglia: litologia.

Per quanto riguarda l'uso del suolo, la maggior parte della superficie del bacino è caratterizzata dalla presenza di aree boschive (40.8%) e di aree ad uso seminativo (48.3%). Nella parte nord occidentale del bacino vi è la presenza di aree destinate alla pastorizia (6.8 %) mentre la zona più urbanizzata del bacino si ha in corrispondenza degli abitati di Orvieto e Ciconia. Le principali caratteristiche dell'uso del suolo sono riportate in Tabella 2.2 e la rappresentazione cartografica è mostrata in Figura 2.3.

Tabella 2.2. Uso del suolo del bacino del Fiume Paglia.

Uso del suolo	Area (%)	
Boschi	40.8	
Frutteti	2.3	
Industriale	0.3	
Pascoli	6.8	
Seminativi	48.3	
Urbanizzato	1.4	

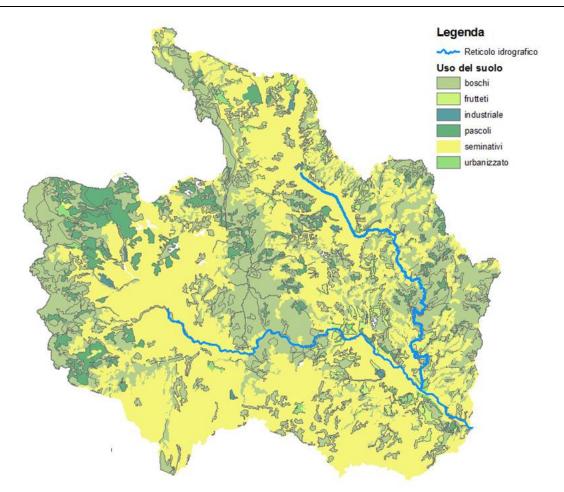


Figura 2.3. Bacino idrografico del Fiume Paglia: uso del suolo.

Sulla base dei dati geolitologici e di uso del suolo è stata elaborata, mediante l'utilizzo del Sistema Informativo Territoriale (SIT), la mappa relativa al parametro adimensionale CN (Curve Number), stimato secondo la procedura proposta dal Soil Conservation Service e che determina la massima ritenzione potenziale del terreno. La Figura 2.4 mostra la distribuzione spaziale del CN per condizioni intermedie di umidità del suolo, CN(II), mentre la Figura 2.5 illustra la variabilità del CN(II) in funzione dell'area dimensionale A/A_B, dove A_B è l'area del bacino. Come si può notare circa il 70% della superficie del bacino ha un CN(II) superiore a 65 ed il valore medio, per condizioni intermedie di umidità del suolo, risulta pari a 71.

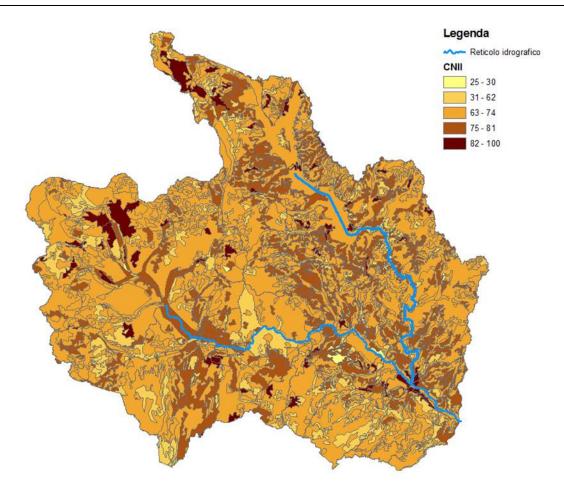


Figura 2.4. Bacino idrografico del Fiume Paglia: variabilità del grado di assorbimento del suolo secondo il parametro adimensionale CN (Curve Number) per condizioni di umidità intermedie.

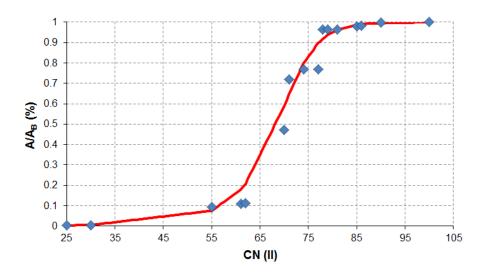


Figura 2.5. Bacino idrografico del Fiume Paglia: variabilità del parametro CN per condizioni intermedie di umidità del terreno, (A_B area del bacino).

2.3. Caratterizzazione geometrica del corso d'acqua

Il tratto fluviale del Fiume Paglia per il quale è necessario delimitare le aree soggette ad inondazione ha una lunghezza di 20 km ed è compreso tra il ponte di Allerona, a monte, e la confluenza con il Fiume Tevere, a valle. Lo sviluppo plano-altimetrico della parte del corso d'acqua da investigare è stato determinato per mezzo di tecniche di rilievo topografico. A riguardo, le sezioni rilevate sono state fornite dal Consorzio e sono state georeferenziate in modo tale da rendere possibile la sovrapposizione a qualunque tipo di carta topografica. Le sezioni sono state riferite a un sistema di coordinate planimetriche UTM33-WGS84 (Universal Transverse Mercator Projection - World Geodetic System 1984) e coordinate altimetriche geodetiche. Complessivamente sono state rilevate 65 sezioni, con una media di 1 sezione ogni 300 m. Le caratteristiche geometriche delle sezioni sono allegate alla relazione in formato digitale.

Nella Tabella 2.3 è riportata la progressiva delle sezioni nel Fiume Paglia, calcolata da monte verso valle, le coordinate del fondo alveo espresse nel sistema di riferimento UTM33-WGS84, la pendenza locale del fondo alveo, le quote geodetiche del fondo alveo, dell'argine destro e sinistro che di seguito verranno intese, nel caso in cui non sia presente un argine ben definito, anche come sommità di sponda destra e sinistra rilevata. In presenza di un salto di fondo o di una briglia il valore della pendenza locale dell'alveo non viene specificato. Similarmente, la Tabella 2.4 riporta le caratteristiche topografiche delle sezioni rilevate per il Torrente Chiani.

Tabella 2.3. Caratteristiche topografiche delle sezioni rilevate per il Fiume Paglia, dove per "argine" si intende la sommità di sponda rilevata; l'assenza del valore della pendenza locale dell'alveo indica la presenza di un salto di fondo o di uno sbarramento trasversale.

	Fiume Paglia									
Nome sezione	Distanza progressiva	Coordinate (UTM33-WGS84)		Quote (m s.l.m.)			Pendenza locale			
	(km)	X	Y	Fondo alveo	Argine Sinistro	Argine Destro	alveo (%)			
PA_560	0.000	256393.11	4740830.28	155.34	159.568	158.803	0.53			
PA_556	1.021	256971.90	4740135.26	149.93	156.258	153.810	0.33			
PA_555	1.080	256992.21	4740080.56	149.74	155.009	155.198	0.89			
PA_554	1.153	257025.03	4740013.36	149.09	153.816	154.223	1.73			
PA_553	1.229	257063.71	4739949.28	147.78	159.189	157.496	0.41			
PA_552	1.312	257107.67	4739879.84	147.43	157.496	157.405	-0.75			
PA_551	1.356	257137.55	4739847.31	147.76	151.241	151.376	3.33			
PA_550	1.394	257165.98	4739829.06	146.50	149.394	150.026	-0.48			
PA_540	1.584	257344.31	4739764.69	147.41	147.640	147.390	-0.31			
PA_530	1.613	257373.45	4739757.65	147.50	145.980	146.690	0.29			
PA_520	1.958	257712.67	4739810.14	146.48	146.700	146.880	1.45			
PA_510	2.078	257828.12	4739832.56	144.74	143.620	145.590	0.72			

	Fiume Paglia								
Nome sezione	Distanza progressiva	Coordinate (UTM33-WGS84)		Quote (m s.l.m.)			Pendenza locale		
	(km)	X	Y	Fondo alveo	Argine Sinistro	Argine Destro	alveo (%)		
PA_500	2.222	257967.28	4739872.16	143.71	143.260	145.670	0.52		
PA_490	2.766	258433.99	4740141.66	140.86	143.146	141.894	0.85		
PA_480	2.897	258544.64	4740203.60	139.74	142.243	143.330	0.69		
PA_470	2.964	258607.74	4740222.31	139.28	142.243	143.330	0.77		
PA_460	3.054	258690.48	4740252.26	138.59	137.910	139.845	0.53		
PA_450	3.261	258864.87	4740353.77	137.50	136.081	135.655	0.35		
PA_440	3.505	259058.07	4740253.48	136.63	134.310	136.773	0.02		
PA_430	3.766	259229.76	4740056.86	136.57	133.519	135.561	0.64		
PA_420	4.321	259522.21	4739603.07	133.05	132.170	134.220	0.09		
PA_410	4.800	259879.55	4739309.74	132.61	131.560	132.780	0.28		
PA_400	5.257	260164.61	4738954.98	131.34	132.010	132.780	0.36		
PA_390	5.720	260289.14	4738574.43	129.67	130.151	131.070	0.46		
PA_380	6.158	260471.26	4738219.24	127.64	129.180	130.023	0.17		
PA_370	6.434	260732.70	4738160.84	127.17	127.603	127.517	0.26		
PA_360	6.662	260994.81	4738159.08	126.59	123.961	124.220	0.57		
PA_350	6.892	261148.34	4737964.23	125.28	124.720	122.893	0.83		
PA_340	7.073	261277.23	4737836.78	123.79	120.937	124.860	0.37		
PA_330	7.444	261608.62	4737672.58	122.41	119.045	121.651	0.41		
PA_320	8.052	261989.98	4737240.75	119.89	117.419	122.046	0.13		
PA_310	8.157	262058.92	4737163.62	119.76	121.440	118.843	0.46		
PA_300	8.658	262439.16	4736889.34	117.48	116.451	119.910	0.20		
PA_290	9.326	263045.74	4736845.72	116.16	114.777	120.458	0.87		
PA_280	9.639	263203.23	4736611.21	113.45	116.120	117.123	-0.28		
PA_270	9.908	263353.78	4736393.43	114.21	116.997	114.805	0.20		
PA_260	10.374	263611.66	4736007.92	113.29	113.919	116.475	0.61		
PA_250	10.667	263713.16	4735738.72	111.50	114.175	114.738	-0.22		
PA_240	10.836	263861.81	4735660.40	111.87	114.148	115.288	0.20		
PA_230	11.269	264169.15	4735465.90	111.01	114.148	115.288	0.59		
PA_220	11.542	264281.19	4735227.14	109.40	113.570	114.731	-0.63		
PA_210	11.818	264527.23	4735116.88	111.13	113.668	116.149	0.57		
PA_205	12.100	264686.99	4734842.91	109.53	117.200	118.598	0.43		
PA_200	12.466	264828.93	4734605.57	107.96	116.650	116.272	0.62		
PA_190	12.835	265163.80	4734494.47	105.65	113.990	113.110	0.01		
PA_180	12.929	265239.55	4734440.44	105.65	108.835	112.255	-0.33		
PA_170	13.225	265473.04	4734260.23	106.64	109.104	115.040	1.40		

	Fiume Paglia								
Nome sezione	Distanza progressiva		dinate -WGS84)	Quote (m s.l.m.)			Pendenza locale		
	(km)	X	Y	Fondo alveo	Argine Sinistro	Argine Destro	alveo (%)		
PA_160	13.299	265537.78	4734225.81	105.60	110.910	113.290	0.36		
PA_150	13.588	265817.04	4734156.19	104.55	113.560	113.522	0.03		
PA_140	13.702	265927.01	4734132.18	104.51	109.712	107.091	0.07		
PA_130	14.120	266311.62	4734071.60	104.20	107.760	108.851	0.34		
PA_120	14.423	266558.67	4733898.12	103.16	107.310	107.968	0.25		
PA_110	14.798	266754.57	4733595.80	102.24	106.156	106.809	0.06		
PA_100	15.179	266891.33	4733260.63	102.02	99.401	101.220	0.33		
PA_90	15.548	267204.54	4733058.34	100.81	100.469	99.554	0.25		
PA_80	16.664	267629.92	4732161.02	97.98	100.153	100.512	0.18		
PA_70	17.761	268578.67	4731725.76	96.05	98.773	99.470	0.41		
PA_60	18.363	269116.35	4731497.03	93.61	100.253	98.988	0.47		
PA_50	18.636	269366.09	4731396.11	92.34	94.905	96.915	0.44		
PA_40	18.960	269644.37	4731257.27	90.91	92.764	93.063	-0.33		
PA_30	19.100	269707.88	4731132.45	91.37	159.568	158.803	0.23		
PA_20	19.453	269870.51	4730826.90	90.54	156.258	153.810	0.30		
PA_10	20.004	270338.60	4730673.27	88.87	155.009	155.198	0.53		

Tabella 2.4. Come per la Tabella 2.3, ma per il Torrente Chiani.

	Torrente Chiani								
Nome sezione	Distanza progressiva	Coordinate (UTM33-WGS84)		Quote (m s.l.m.)			Pendenza locale		
	(km)	X	Y	Fondo alveo	Argine Sinistro	Argine Destro	alveo (%)		
CH_177	0.000	264390.49	4741280.37	152.45	155.350	157.554			
CH_178	0.048	264438.36	4741276.92	152.11	154.770	158.114	0.71		
CH_179	0.099	264483.85	4741298.62	151.87	154.550	157.863	0.47		
CH_180	0.154	264522.49	4741333.44	151.54	155.300	157.231	0.60		
CH_181	0.169	264532.11	4741344.49	151.57	154.860	157.710	-0.20		
CH_182	0.189	264548.77	4741356.29	151.54	154.550	154.999	0.15		
CH_183	0.211	264566.11	4741369.91	151.44	154.090	157.800	0.45		
CH_184	0.232	264581.74	4741383.08	151.53	155.100	154.260	-0.43		
CH_185	0.258	264601.57	4741400.87	151.53	155.000	154.260	0.00		
CH_186	0.283	264620.36	4741416.27	151.53	153.600	154.260	0.00		
CH_187	0.312	264642.89	4741434.30	151.51	154.900	157.800	0.07		
CH_188	0.321	264650.89	4741440.13	153.60	157.800	157.800	-23.22		

	Torrente Chiani								
Nome sezione	Distanza progressiva		dinate -WGS84)	Quote (m s.l.m.)			Pendenza locale		
	(km)	X	Y	Fondo alveo	Argine Sinistro	Argine Destro	alveo (%)		
CH_189	0.388	264714.42	4741456.44	151.49	154.280	157.800	3.15		
CH_190	0.441	264766.90	4741457.38	150.85	157.270	157.800	1.21		
CH_191	0.551	264873.34	4741442.73	150.46	160.000	157.800	0.35		
CH_192	0.632	264942.74	4741402.29	150.46	159.500	157.800	0.00		
CH_193	0.712	265001.89	4741348.13	150.40	162.790	157.800	0.08		
CH_194	0.796	265059.08	4741287.51	149.31	156.680	157.800	1.30		
CH_195	0.863	265108.70	4741242.70	149.14	155.140	157.800	0.25		
CH_196	0.969	265134.40	4741141.39	149.23	153.230	157.800	-0.08		
CH_197	1.075	265129.41	4741035.61	149.16	152.360	157.770	0.07		
CH_198	1.159	265103.51	4740956.23	149.15	155.801	157.800	0.01		
CH_199	1.218	265081.43	4740901.66	149.16	151.350	156.686	-0.02		
CH_200	1.305	265046.24	4740822.11	149.16	157.580	153.970	0.00		
CH_201	1.401	265067.52	4740731.99	149.08	151.190	167.695	0.08		
CH_202	1.459	265101.58	4740685.59	148.90	153.510	166.890	0.31		
CH_203	1.500	265121.39	4740650.93	145.65	150.830	153.650	7.93		
CH_204	1.969	265089.45	4740251.25	142.96	146.930	147.820	0.57		
CH_205	2.416	265032.79	4739918.26	143.11	147.920	148.080	-0.03		
CH_206	2.460	265028.71	4739875.59	141.68	148.780	146.310	3.25		
CH_207	2.494	265023.72	4739842.29	141.69	146.380	145.890	-0.03		
CH_208	2.567	264968.28	4739800.79	140.86	150.530	146.720	1.14		
CH_209	2.639	264904.61	4739765.77	140.98	146.100	145.630	-0.17		
CH_210	2.709	264837.40	4739749.45	140.65	145.870	145.240	0.47		
CH_211	2.772	264774.76	4739748.04	140.59	144.800	145.170	0.10		
CH_212	2.856	264691.49	4739754.62	141.05	144.400	144.740	-0.55		
CH_213	2.934	264614.39	4739766.83	140.17	144.330	144.282	1.13		
CH_214	3.038	264514.79	4739754.40	138.59	144.100	146.439	1.52		
CH_215	3.121	264444.91	4739709.55	138.66	143.630	147.370	-0.09		
CH_216	3.214	264362.07	4739669.81	139.51	143.400	144.120	-0.91		
CH_217	3.366	264222.29	4739610.33	138.97	143.119	152.800	0.36		
CH_218	3.444	264153.07	4739575.85	138.65	143.100	149.010	0.41		
CH_219	3.536	264080.84	4739519.95	137.88	143.039	147.429	0.84		
CH_220	3.700	263996.87	4739380.02	137.83	142.780	146.400	0.03		
CH_221	3.871	263943.17	4739219.20	136.90	142.179	144.069	0.54		
CH_222	3.963	263951.73	4739130.13	135.03	141.689	143.751	2.03		
CH_223	4.053	264004.82	4739058.48	136.92	141.379	142.383	-2.10		

	Torrente Chiani							
	D' 4	Coor	dinate	0	ъ .			
Nome sezione	Distanza progressiva	(UTM33	(UTM33-WGS84) Quote (m s.l.m.)		Quote (m s.i.m		Pendenza locale	
	(km)	X	Y	Fondo alveo	Argine Sinistro	Argine Destro	alveo (%)	
CH_224	4.185	264085.81	4738955.30	136.01	140.972	140.852	0.69	
CH_225	4.257	264118.93	4738890.79	136.70	140.708	141.270	-0.95	
CH_226	4.402	264177.59	4738759.67	136.42	140.599	140.459	0.19	
CH_227	4.535	264211.65	4738631.09	135.69	140.254	140.325	0.55	
CH_228	4.708	264294.71	4738487.60	134.53	139.136	139.956	0.68	
CH_230	5.004	264577.17	4738459.92	134.24	138.600	138.050	0.10	
CH_231	5.480	264411.11	4738103.94	132.80	138.110	139.010	0.30	
CH_233	6.168	264831.91	4738052.49	131.53	138.500	136.240	0.18	
CH_234	6.176	264839.64	4738052.17	131.53	138.500	136.240	0.00	
CH_235	6.179	264842.11	4738052.34	131.53	138.500	136.240	0.00	
CH_236	6.197	264860.65	4738051.87	130.88	138.200	134.800	3.61	
CH_237	6.249	264911.91	4738043.94	130.67	135.700	134.790	0.40	
CH_238	6.267	264929.00	4738039.32	130.17	136.630	136.420	2.78	
CH_239	6.289	264950.38	4738032.65	130.51	137.420	136.080	-1.55	
CH_240	6.467	265121.51	4737997.87	128.81	132.023	140.000	0.95	
CH_241	6.835	265453.28	4738111.14	126.24	130.710	130.000	0.70	
CH_242	7.144	265685.17	4738162.86	124.75	130.146	130.199	0.48	
CH_243	8.086	265574.07	4737305.91	119.65	123.161	123.540	0.54	
CH_244	8.574	265244.20	4736983.00	117.62	122.465	122.312	0.42	
CH_245	8.850	265047.89	4736796.95	116.84	121.680	128.380	0.28	
CH_246	9.338	265024.44	4736311.45	115.80	119.930	119.470	0.21	
CH_247	9.774	265143.45	4735905.47	113.75	117.880	116.720	0.47	
CH_248	9.899	265143.36	4735783.78	112.74	116.900	116.810	0.81	
CH_249	10.222	265257.94	4735518.24	111.55	115.140	119.400	0.37	
CH_250	10.376	265223.57	4735397.88	110.95	119.160	119.270	0.39	
CH_251	10.542	265140.55	4735255.80	110.31	119.250	119.440	0.39	
CH_253	10.691	265178.85	4735116.73	110.62	116.540	115.960	-0.21	
CH_254	10.744	265172.52	4735063.45	110.71	117.930	116.010	-0.17	
CH_255	10.848	265142.54	4734964.34	109.95	116.080	114.940	0.73	
CH_256	10.994	265089.27	4734835.98	109.84	115.240	114.190	0.08	
CH_257	11.052	265042.20	4734802.51	108.80	116.070	112.930	1.79	
CH_258	11.213	264973.12	4734665.79	107.67	111.171	111.881	0.70	

2.3.1. Singolarità

Lungo l'asta fluviale del Fiume Paglia sono state rilevate nove diverse singolarità. Nella Tabella 2.5 è riportata l'ubicazione di ciascuna struttura, la larghezza della singolarità e la superficie libera per il deflusso della corrente.

Per il Torrente Chiani sono stati utilizzati i rilievi relativi alle casse di Molino dei Bagni (vedi Tabella 2.4 dalla sezione 183 alla sezione 199) e di Morrano (vedi Tabella 2.4 dalla sezione 217 alla sezione 229) assieme agli attraversamenti fluviali di cui in Tabella 2.5.

Tabella 2.5. Fiume Paglia: principali caratteristiche degli attraversamenti fluviali

Corso interessato dalla struttura	Progressiva (km)	Tipo di struttura	Larghezza struttura (m)	Superficie Deflusso (m²)
	1.598	Ponte su SP n. 48 per Allerona Scalo	9.2	839.8
	2.018	Ponte ferroviario Ferrovia direttissima Roma-Firenze	11.3	3342.2
Fiume Paglia	2.832	Ponte ferroviario Ferrovia Roma-Firenze	9.7	1750.8
	2.931	Ponte su Autostrada del Sole	23	1276.2
	12.173	Nuovo ponte su complanare di raccordo fra la SS. N. 71 e 205	14	1549.8
	12.882	Ponte di attraversamento pedonale	3.8	1063.3
	13.262	Ponte dell'Adunata - Orvieto	10.3	597.1
	13.772	Soglia	-	-
	19.030	Ponte su Autostrada del Sole	23	1029.0
Fiume Chiani	10.557	Ponte località Ciconia	9	437.5

2.3.2. Modello digitale del terreno delle fasce fluviali

Per la determinazione delle aree allagabili lungo il Fiume Paglia e il Torrente Chiani, la topografia derivante dal rilievo è stata integrata con quella ricavata dal modello digitale del terreno (DTM) fornito dalla Regione Umbria. Tale DTM, ottenuto dall'acquisizione laserscanning, ha risoluzione 2 m x 2 m.

2.4. Rete di monitoraggio idro-pluviometrico

All'interno o nelle immediate vicinanze del bacino del Fiume Paglia e del Torrente Chiani, come mostrato in Figura 2.6, sono presenti venti stazioni di monitoraggio pluviometrico, sette stazioni di monitoraggio termometrico e cinque stazioni di monitoraggio idrometrico.

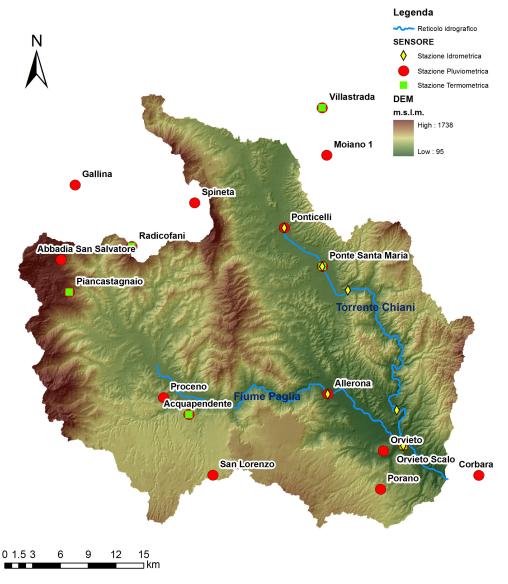


Figura 2.6. Bacino di studio del Fiume Paglia e del Torrente Chiani: caratteristiche morfologiche e stazioni idrometeorologiche d'interesse.

Nella Tabella 2.6 sono riportate le caratteristiche delle stazioni pluviometriche con registrazione oraria ricadenti all'interno dell'area di studio e i relativi periodi di funzionamento. Come è possibile osservare anche dalla Tabella 2.7 alcune stazioni soprattutto quelle di proprietà della Regione Lazio e della Regione Toscana, presentano periodi di funzionamento limitati e caratterizzati da mancanza di dati. In particolare alcune stazioni presentano al più tre anni di registrazioni consecutive (si veda ad esempio Proceno e Acquapendente in Tabella 2.7)

che ai fini dell'analisi statistica non costituiscono un campione rappresentativo. Per tale motivo i dati mancanti per ciascuna stazione sono stati riempiti attraverso un'interpolazione inversa con i dati delle stazioni pluviometriche più vicine. In questo modo sono stati ottenuti dati orari di pioggia consecutivi per i periodo 1994-2009.

Tabella 2.6. Caratteristiche delle stazioni pluviometriche disponibili nell'area del bacino Fiume Paglia e del Torrente Chiani

Stazione	Ente	Coordinat	Coordinate WGS 84		
Stazione	Proprietario	X (m)	Y (m)	funzionamento	
San Lorenzo	Reg. Lazio	244980.88	4731053.56	Dal 1996	
Proceno	Reg. Lazio	239664.69	4739417.27	1994 - 1996	
Acquapendente	Reg. Lazio	242408.87	4737581.83	1996 - 1997; 2005 - 2007	
Abbadia S. Salvatore	Reg. Toscana	228600.58	4754251.98	dal 2005	
Spineta	Reg. Toscana	243017.31	4760390.27	dal 2005	
Gallina	Reg. Toscana	230121.94	4762321.52	dal 2005	
Radicofani	Reg. Toscana	236254.41	4755686.31	dal 1994	
Piancastagnaio	Reg. Toscana	229499.96	4750768.32	dal 1994	
Allerona	Reg. Umbria	257368.09	4739776.58	dal 1994	
Castelcellesi	Reg. Umbria	266116.02	4718557.72	dal 1994	
Compignano	Reg. Umbria	278385.96	4758625.44	dal 1994	
Corbara	Reg. Umbria	273651.98	4731030.63	dal 1994	
Moiano 1	Reg. Umbria	257260.10	4765518.40	dal 1994	
Orvieto	Reg. Umbria	263379.05	4733664.62	dal 1994	
Orvieto Scalo	Reg. Umbria	265515.03	4734240.61	dal 1994	
Ponte S. Maria	Reg. Umbria	256794.10	4753545.48	dal 1994	
Ponticelli	Reg. Umbria	252676.13	4757694.46	dal 1994	
Porano	Reg. Umbria	263052.05	4729533.64	dal 1994	
Ripalvella	Reg. Umbria	279329.95	4746948.52	dal 1994	
Villastrada	Reg. Umbria	256756.11	4770641.37	dal 1994	

Tabella 2.7. Periodi di funzionamento e percentuali di dati registrati per le stazioni pluviometriche ricadenti nell'area di studio.

DATI PLUVIOMETRICI ORARI																
ANNO	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
LAZIO																
San Lorenzo			<	X	X	<		<	X	X	<	<	X	<	<	X
Proceno	X	X	<													
Acquapendente			X	<								X	X	X		
							TOSC	ANA								
Abbadia San Salvatore												<	<	<	<	X
Spineta												<	<	<	<	<
Gallina												<	<	<	\	<
Radicofani	<	<	<	<	<	<	<	<	X	<	X	X	X	<		X
Piancastagnaio	_<_	_ <	<	<	<	<	<	<	<	<	<	<	<	<	<	<
							UMBI	RIA								
Allerona	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Castelcellesi	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Compignano	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Corbara	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Moiano 1	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Orvieto	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Orvieto Scalo	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Ponte Santa Maria	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Ponticelli	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Porano	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Ripalvella	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Villastrada	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

Nell'eseguire l'operazione di ricostruzione dei dati mancanti non sono stati presi in considerazione i dati pluviometrici della stazione di Proceno e di Radicofani in quanto caratterizzate, rispettivamente, da una grande quantità di dati mancanti e da valori cumulati annui di pioggia significativamente diversi da quelli registrati nelle stazioni circostanti. In totale quindi le stazioni pluviometriche che sono state prese in considerazione ai fini dell'analisi idrologica del bacino di studio sono in numero di diciotto.

Per quanto riguarda i dati termometrici, la Tabella 2.8 riassume le principali caratteristiche delle stazioni presenti nel bacino del Fiume Paglia e del Torrente Chiani, il relativo periodo di funzionamento e il periodo mancante. In particolare, poiché anche tali registrazioni termometriche sono caratterizzate da un gran numero di dati mancanti, è stata applicata la stessa procedura di ricostruzione dei dati applicata ai dati pluviometrici che ha consentito di ottenere dati orari di temperatura per il periodo 1994-2009.

Tabella 2.8. Caratteristiche delle stazioni termometriche disponibili nell'area del bacino del Torrente Chiani e del Fiume Paglia.

Stazione	Ente	Coordinate	e WGS 84	Periodo di	Periodo	
Stazione	Proprietario	X (m)	Y (m)	funzionamento	Mancante	
Acquapendente	Reg. Lazio	242408.87	4737581.83	1996 - 2008	1999 - 2004	
Radicofani	Reg. Toscana	236254.41	4755686.31	1993 - 2009	2008	
Piancastagnaio	Reg. Toscana	229499.96	4750768.32	1994 - 2009	2008	
Compignano	Reg. Umbria	278385.96	4758625.44	1995 – 2009	/	
Orvieto Scalo	Reg. Umbria	265515.03	4734240.61	1994 – 2009	/	
Ponte S. Maria	nte S. Maria Reg. Umbria		4753545.48	1989 – 2009	/	
Villastrada	Reg. Umbria	256756.11	4770641.37	1989 – 2009	/	

Nel bacino del Fiume Paglia e del Torrente Chiani sono inoltre disponibili cinque stazioni idrometriche le cui caratteristiche sono riassunte in Tabella 2.9. In particolare per tali stazioni si dispone di dati di livello semiorari.

Tabella 2.9. Caratteristiche delle stazioni idrometriche disponibili nell'area del bacino del Torrente Chiani e del Fiume Paglia.

Stazione	Ente	Coordinate	e WGS 84	Periodo di	Quota zero idrometrico	
Stazione	Proprietario	X (m)	Y (m)	funzionamento	(m.s.l.m.)	
Orvieto	Reg. Umbria	265515.03	4734240.61	Dal 1988	105.45	
Morrano	Reg. Umbria	264824.04	4738046.59	Dal 1988	131.74	
Allerona	Reg. Umbria	257368.09	4739776.58	Dal 2002	147.74	
Ponticelli	Reg. Umbria	252676.13	4757694.46	Dal 1991	243.21	
Ponte Santa Maria	Reg. Umbria	256794.10	4753545.48	Dal 1988	235.34	

In Tabella 2.10 sono riportate le serie dei massimi annuali delle portate al colmo osservate nelle stazioni idrometrografiche del Paglia a Orvieto e del Chiani a Ponte di Morrano adottando le scale di deflusso revisionate fornite da una pubblicazione del Servizio Idrografico e Mareografico Nazionale (S.I.M.N.) sulla ricostruzione delle scale di deflusso delle principali stazioni di misura nel bacini del Fiume Tevere (Bencivenga et al., 2001).

Come si osserva i massimi eventi di piena nel bacino in esame sono stati registrati nel 1937, 1960 e 1965.

Tabella 2.10. Massime altezze idrometriche annuali e relative portate per il Fiume Paglia a Orvieto e il Torrente Chiani a Morrano.

	Orvieto	Chiani a Morrano									
Data	hc (m)	Qc (m³/s)	Data	hc (m)	Qc (m³/s)	Data	hc (m)	Qc (m³/s)	Data	hc (m)	Qc (m³/s)
16/01/1930	5.60	269.4	1966	-	-	1930	-	-	05/12/1966	3.09	69.91
19/02/1931	6.85	515.4	1967	-	-	1931	-	-	14/09/1967	3.60	102.0
30/11/1932	7.14	589.3	1968	-	-	30/11/1932	6.70	501.9	1968	-	_
13/121933	6.80	503.8	1969	-	-	1933	-	-	26/11/1969	4.11	142.0
13/12/1934	6.72	484.5	1970	-	-	07/04/1934	5.19	256.2	04/03/1970	3.39	87.90
1935	-	-	21/01/1971	3.70	231.8	26/01/1935	5.66	319.6	12/11/1971	2.46	32.32
1936	-	-	01/12/1972	4.54	382.0	27/02/1936	5.89	356.2	01/12/1972	3.86	121.4
07/10/1937	10.28	2054	23/01/1973	3.84	254.4	07/10/1937	7.00	565.9	14/02/1973	3.47	93.13
1938	-	-	04/03/1974	4.64	402.6	1938	-	-	04/05/1974	3.66	106.3
1939	-	-	1975	-	-	1939	-	-	17/11/1975	3.86	121.4
1940	-	-	10/03/1976	5.12	505.2	1940	-	-	15/02/1976	4.36	164.7
03/02/1941	5.14	201.2	31/01/1977	5.02	484.6	1941	-	-	31/10/1977	4.55	183.4
1942	-	-	15/04/1978	4.56	395.3	1942	-	-	15/04/1978	4.58	186.4
1943	-	-	16/02/1979	4.92	464.6	1943	-	-	17/02/1979	4.26	155.3
1944	-	-	06/11/1980	5.34	552.7	1944	-	-	06/11/1980	4.78	207.8
1945	-	-	30/12/1981	3.50	202.5	1945	-	-	30/12/1981	3.48	93.80
1946	-	-	10/11/1982	7.85	1461	1946	-	-	10/11/1982	6.24	414.5
04/02/1947	8.47	1731	26/03/1983	6.04	734.5	04/02/1947	6.22	410.6	14/02/1983	4.55	183.4
1948	-	-	26/02/1984	6.08	746.6	27/10/1948	5.07	240.9	26/02/1984	4.68	196.9
1949	-	-	16/01/1985	4.36	358.0	25/06/1949	3.90	124.5	19895	-	-
1950	-	-	1986	-	-	23/12/1950	4.18	148.0	1986	-	-
31/10/1951	7.41	733.4	09/12/1987	6.20	784.3	25/02/1951	4.24	153.3	1987	-	-
13/01/1952	7.23	682.3	1988	-	-	13/01/1952	5.05	238.5	1988	-	-
27/08/1953	7.70	823.6	1989	-	-	20/12/1953	4.16	146.2	01/03/1989	1.31	43.15
03/03/1954	5.65	350.2	1990	-	-	03/03/1954	4.34	162.6	10/12/1990	2.24	126.2
15/12/1955	5.15	272.2	16/11/1991	6.43	868.7	28/02/1955	3.36	79.67	16/11/1991	3.96	315.9
21/01/1956	5.94	400.0	05/12/1992	5.00	490.0	21/01/1956	4.08	139.3	08/12/1992	1.98	105.9
21/01/1957	4.30	156.2	26/12/1993	3.58	250.0	01/10/1957	3.07	51.90	06/11/1993	1.75	87.76
16/12/1958	4.73	212.4	05/01/1994	4.17	337.7	12/01/1958	4.12	142.7	05/01/1994	2.08	113.7
13/11/1959	6.40	486.9	31/12/1995	3.80	281.2	13/11/1959	4.08	139.3	18/02/1995	1.81	92.58
18/09/1960	8.35	1621	18/11/1996	5.74	664.7	18/09/1960	7.44	670.9	18/11/1996	2.41	140.0
1961	-	-	01/01/1997	3.65	259.7	04/01/1961	4.15	145.3	01/01/1997	1.97	105.2
1962	-	-	04/02/1998	3.98	299.1	18/11/1962	3.16	73.85	04/02/1998	2.07	112.9
1963	-	-	19/11/1999	4.64	428.2	11/02/1963	4.45	173.5	15/12/1999	2.01	108.3
1964	-	-	27/12/2000	4.80	461.0	24/10/1964	4.15	145.3	27/12/2000	2.32	132.6
01/09/1965	8.00	1342	-	-	-	01/09/1965	7.55	699.0	-	-	-

2.5. Schematizzazione del bacino

Nell'ottica di valutare il comportamento idrologico del bacino mediante la modellistica semidistribuita in continuo, sono stati individuati i sottobacini che rappresentano immissioni concentrate nell'asta fluviale da analizzare e le aree direttamente drenanti che rappresentano immissioni distribuite.

Sulla base del reticolo idrografico IGM 1:25.000 e del tratto dove deve essere valutata la pericolosità idraulica, il bacino del Fiume Paglia e del Torrente Chiani fino alla confluenza con il Fiume Tevere viene schematizzato in trentanove elementi: ventuno aree direttamente drenanti nell'asta fluviale di interesse e diciotto sottobacini (Figura 2.7). I dati di dettaglio di tali elementi sono riportati nella Tabella 2.11.

Figura 2.7. Schematizzazione del bacino del Fiume Paglia e del Torrente Chiani.

Tabella 2.11. Caratteristiche geomorfologiche dei sottobacini del bacino del Fiume Paglia e del Torrente Chiani: A area, CN Curve Number adottato, Hmax, Hmin e Hmed, rispettivamente, quota massima, minima e media dell'area drenante; L lunghezza dell'asta principale, Rmax e Rmin quote degli estremi di tale asta.

		Are	Asta principale						
N° elemento (sottobacino)	41 (1 2)	CNIII	Hmin Hmax Hmed			T (1)	R _{max}	R _{min}	
(sottobacino)	Ab (km ²)	CNII	(m.s.l.m.)			L (km)	(m.s.l.m.)		
1	294.09	72.0	271.0	1738.0	555.2	11.40	443.0	266.0	
2	16.96	74.1	252.0	610.0	329.0	5.90	266.0	247.0	
3	17.68	72.2	255.0	739.0	493.4	8.60	555.0	247.0	
4	107.82	68.6	265.0	1104.0	514.3	14.20	665.0	247.0	
5	7.24	74.1	246.0	700.0	365.8	2.60	247.0	242.0	
6	36.76	70.3	244.0	631.0	464.1	10.30	475.0	242.0	
7	9.22	70.7	243.0	731.0	392.2	3.70	242.0	229.0	
8	17.15	69.9	249.0	600.0	466.6	7.00	461.0	238.0	
9	35.46	67.2	243.0	625.0	506.2	7.01	575.0	229.0	
10	59.65	70.3	161.0	729.0	393.3	13.30	229.0	152.0	
11	32.60	73.1	158.0	790.0	367.6	12.33	618.0	152.0	
12	6.59	72.4	145.0	550.0	241.8	2.63	152.0	139.0	
13	33.52	72.4	150.0	779.0	317.3	13.61	500.0	139.0	
14	29.41	70.9	127.0	575.0	241.8	4.90	139.0	120.0	
15	41.14	69.2	124.0	686.0	430.4	8.90	475.0	120.0	
16	3.39	62.9	121.0	270.0	150.5	2.44	120.0	112.0	
17	49.74	68.2	119.0	672.0	462.8	5.85	465.0	112.0	
18	4.83	71.7	117.0	259.0	155.6	2.00	112.0	108.0	
19	21.20	70.0	117.0	595.0	377.6	6.20	395.0	107.2	
20	27.56	70.3	114.0	702.0	361.2	8.00	462.0	108.5	
21	57.18	70.2	135.0	837.0	389.1	12.50	199.0	136.0	
22	24.76	69.4	198.0	775.0	501.9	8.70	474.0	202.0	
23	24.54	70.2	194.0	555.0	348.8	8.50	227.0	198.0	
24	50.96	70.7	225.0	829.0	437.9	3.50	256.0	225.0	
25	62.45	70.7	232.0	819.0	395.6	5.00	242.0	241.0	
26	74.27	71.0	225.0	955.0	385.1	6.30	248.0	242.0	
27	134.54	71.5	243.0	1136.0	409.70	13.00	324.0	248.0	
28	0.38	79.9	114.0	133.0	118.6	0.60	108.9	106.8	
29	2.27	70.6	118.0	508.0	261.2	5.00	195.6	106.0	
30	2.18	73.4	120.0	392.0	211.4	2.80	189.0	108.9	
31	3.62	70.4	119.0	545.0	287.1	4.50	464.0	106.3	
32	5.46	70.3	109.0	331.0	175.8	3.71	106.8	99.0	
33	3.05	71.2	121.0	540.0	294.3	4.40	464.0	101.2	
34	14.28	69.4	122.0	535.0	373.2	6.10	407.0	99.0	
35	1.35	68.3	100.0	248.0	157.5	1.45	125.0	102.0	
36	11.32	68.8	113.0	491.0	332.7	4.82	283.0	98.0	
37	4.43	70.2	100.0	570.0	306.2	5.80	457.0	94.4	
38	2.65	67.0	96.0	326.0	228.9	2.45	310.0	95.6	
39	2.50	65.9	95.0	263.0	163.7	1.51	94.4	91.2	

Bibliografia

M., Bencivenga, C., Calenda, C.P. Mancini, (2001). Ricostruzione storica delle scale di deflusso delle principali stazioni di misura nel bacino del Fiume Tevere. Il secolo XX. Istituto Poligrafico e Zecca dello Stato, Roma, 355 p.